3.1.65 \(\int \frac {(a^2+2 a b x^3+b^2 x^6)^{5/2}}{x^2} \, dx\)

Optimal. Leaf size=251 \[ \frac {b^5 x^{14} \sqrt {a^2+2 a b x^3+b^2 x^6}}{14 \left (a+b x^3\right )}+\frac {5 a b^4 x^{11} \sqrt {a^2+2 a b x^3+b^2 x^6}}{11 \left (a+b x^3\right )}+\frac {5 a^2 b^3 x^8 \sqrt {a^2+2 a b x^3+b^2 x^6}}{4 \left (a+b x^3\right )}-\frac {a^5 \sqrt {a^2+2 a b x^3+b^2 x^6}}{x \left (a+b x^3\right )}+\frac {5 a^4 b x^2 \sqrt {a^2+2 a b x^3+b^2 x^6}}{2 \left (a+b x^3\right )}+\frac {2 a^3 b^2 x^5 \sqrt {a^2+2 a b x^3+b^2 x^6}}{a+b x^3} \]

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 251, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {1355, 270} \begin {gather*} \frac {b^5 x^{14} \sqrt {a^2+2 a b x^3+b^2 x^6}}{14 \left (a+b x^3\right )}+\frac {5 a b^4 x^{11} \sqrt {a^2+2 a b x^3+b^2 x^6}}{11 \left (a+b x^3\right )}+\frac {5 a^2 b^3 x^8 \sqrt {a^2+2 a b x^3+b^2 x^6}}{4 \left (a+b x^3\right )}+\frac {2 a^3 b^2 x^5 \sqrt {a^2+2 a b x^3+b^2 x^6}}{a+b x^3}+\frac {5 a^4 b x^2 \sqrt {a^2+2 a b x^3+b^2 x^6}}{2 \left (a+b x^3\right )}-\frac {a^5 \sqrt {a^2+2 a b x^3+b^2 x^6}}{x \left (a+b x^3\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a^2 + 2*a*b*x^3 + b^2*x^6)^(5/2)/x^2,x]

[Out]

-((a^5*Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6])/(x*(a + b*x^3))) + (5*a^4*b*x^2*Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6])/(2*(a
 + b*x^3)) + (2*a^3*b^2*x^5*Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6])/(a + b*x^3) + (5*a^2*b^3*x^8*Sqrt[a^2 + 2*a*b*x^3
 + b^2*x^6])/(4*(a + b*x^3)) + (5*a*b^4*x^11*Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6])/(11*(a + b*x^3)) + (b^5*x^14*Sqr
t[a^2 + 2*a*b*x^3 + b^2*x^6])/(14*(a + b*x^3))

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 1355

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_), x_Symbol] :> Dist[(a + b*x^n + c*x^
(2*n))^FracPart[p]/(c^IntPart[p]*(b/2 + c*x^n)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rubi steps

\begin {align*} \int \frac {\left (a^2+2 a b x^3+b^2 x^6\right )^{5/2}}{x^2} \, dx &=\frac {\sqrt {a^2+2 a b x^3+b^2 x^6} \int \frac {\left (a b+b^2 x^3\right )^5}{x^2} \, dx}{b^4 \left (a b+b^2 x^3\right )}\\ &=\frac {\sqrt {a^2+2 a b x^3+b^2 x^6} \int \left (\frac {a^5 b^5}{x^2}+5 a^4 b^6 x+10 a^3 b^7 x^4+10 a^2 b^8 x^7+5 a b^9 x^{10}+b^{10} x^{13}\right ) \, dx}{b^4 \left (a b+b^2 x^3\right )}\\ &=-\frac {a^5 \sqrt {a^2+2 a b x^3+b^2 x^6}}{x \left (a+b x^3\right )}+\frac {5 a^4 b x^2 \sqrt {a^2+2 a b x^3+b^2 x^6}}{2 \left (a+b x^3\right )}+\frac {2 a^3 b^2 x^5 \sqrt {a^2+2 a b x^3+b^2 x^6}}{a+b x^3}+\frac {5 a^2 b^3 x^8 \sqrt {a^2+2 a b x^3+b^2 x^6}}{4 \left (a+b x^3\right )}+\frac {5 a b^4 x^{11} \sqrt {a^2+2 a b x^3+b^2 x^6}}{11 \left (a+b x^3\right )}+\frac {b^5 x^{14} \sqrt {a^2+2 a b x^3+b^2 x^6}}{14 \left (a+b x^3\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 83, normalized size = 0.33 \begin {gather*} \frac {\sqrt {\left (a+b x^3\right )^2} \left (-308 a^5+770 a^4 b x^3+616 a^3 b^2 x^6+385 a^2 b^3 x^9+140 a b^4 x^{12}+22 b^5 x^{15}\right )}{308 x \left (a+b x^3\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a^2 + 2*a*b*x^3 + b^2*x^6)^(5/2)/x^2,x]

[Out]

(Sqrt[(a + b*x^3)^2]*(-308*a^5 + 770*a^4*b*x^3 + 616*a^3*b^2*x^6 + 385*a^2*b^3*x^9 + 140*a*b^4*x^12 + 22*b^5*x
^15))/(308*x*(a + b*x^3))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 16.65, size = 83, normalized size = 0.33 \begin {gather*} \frac {\sqrt {\left (a+b x^3\right )^2} \left (-308 a^5+770 a^4 b x^3+616 a^3 b^2 x^6+385 a^2 b^3 x^9+140 a b^4 x^{12}+22 b^5 x^{15}\right )}{308 x \left (a+b x^3\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(a^2 + 2*a*b*x^3 + b^2*x^6)^(5/2)/x^2,x]

[Out]

(Sqrt[(a + b*x^3)^2]*(-308*a^5 + 770*a^4*b*x^3 + 616*a^3*b^2*x^6 + 385*a^2*b^3*x^9 + 140*a*b^4*x^12 + 22*b^5*x
^15))/(308*x*(a + b*x^3))

________________________________________________________________________________________

fricas [A]  time = 1.22, size = 59, normalized size = 0.24 \begin {gather*} \frac {22 \, b^{5} x^{15} + 140 \, a b^{4} x^{12} + 385 \, a^{2} b^{3} x^{9} + 616 \, a^{3} b^{2} x^{6} + 770 \, a^{4} b x^{3} - 308 \, a^{5}}{308 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^6+2*a*b*x^3+a^2)^(5/2)/x^2,x, algorithm="fricas")

[Out]

1/308*(22*b^5*x^15 + 140*a*b^4*x^12 + 385*a^2*b^3*x^9 + 616*a^3*b^2*x^6 + 770*a^4*b*x^3 - 308*a^5)/x

________________________________________________________________________________________

giac [A]  time = 0.33, size = 105, normalized size = 0.42 \begin {gather*} \frac {1}{14} \, b^{5} x^{14} \mathrm {sgn}\left (b x^{3} + a\right ) + \frac {5}{11} \, a b^{4} x^{11} \mathrm {sgn}\left (b x^{3} + a\right ) + \frac {5}{4} \, a^{2} b^{3} x^{8} \mathrm {sgn}\left (b x^{3} + a\right ) + 2 \, a^{3} b^{2} x^{5} \mathrm {sgn}\left (b x^{3} + a\right ) + \frac {5}{2} \, a^{4} b x^{2} \mathrm {sgn}\left (b x^{3} + a\right ) - \frac {a^{5} \mathrm {sgn}\left (b x^{3} + a\right )}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^6+2*a*b*x^3+a^2)^(5/2)/x^2,x, algorithm="giac")

[Out]

1/14*b^5*x^14*sgn(b*x^3 + a) + 5/11*a*b^4*x^11*sgn(b*x^3 + a) + 5/4*a^2*b^3*x^8*sgn(b*x^3 + a) + 2*a^3*b^2*x^5
*sgn(b*x^3 + a) + 5/2*a^4*b*x^2*sgn(b*x^3 + a) - a^5*sgn(b*x^3 + a)/x

________________________________________________________________________________________

maple [A]  time = 0.01, size = 80, normalized size = 0.32 \begin {gather*} -\frac {\left (-22 b^{5} x^{15}-140 a \,b^{4} x^{12}-385 a^{2} b^{3} x^{9}-616 a^{3} b^{2} x^{6}-770 a^{4} b \,x^{3}+308 a^{5}\right ) \left (\left (b \,x^{3}+a \right )^{2}\right )^{\frac {5}{2}}}{308 \left (b \,x^{3}+a \right )^{5} x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b^2*x^6+2*a*b*x^3+a^2)^(5/2)/x^2,x)

[Out]

-1/308*(-22*b^5*x^15-140*a*b^4*x^12-385*a^2*b^3*x^9-616*a^3*b^2*x^6-770*a^4*b*x^3+308*a^5)*((b*x^3+a)^2)^(5/2)
/x/(b*x^3+a)^5

________________________________________________________________________________________

maxima [A]  time = 0.82, size = 59, normalized size = 0.24 \begin {gather*} \frac {22 \, b^{5} x^{15} + 140 \, a b^{4} x^{12} + 385 \, a^{2} b^{3} x^{9} + 616 \, a^{3} b^{2} x^{6} + 770 \, a^{4} b x^{3} - 308 \, a^{5}}{308 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^6+2*a*b*x^3+a^2)^(5/2)/x^2,x, algorithm="maxima")

[Out]

1/308*(22*b^5*x^15 + 140*a*b^4*x^12 + 385*a^2*b^3*x^9 + 616*a^3*b^2*x^6 + 770*a^4*b*x^3 - 308*a^5)/x

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a^2+2\,a\,b\,x^3+b^2\,x^6\right )}^{5/2}}{x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2 + b^2*x^6 + 2*a*b*x^3)^(5/2)/x^2,x)

[Out]

int((a^2 + b^2*x^6 + 2*a*b*x^3)^(5/2)/x^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (\left (a + b x^{3}\right )^{2}\right )^{\frac {5}{2}}}{x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b**2*x**6+2*a*b*x**3+a**2)**(5/2)/x**2,x)

[Out]

Integral(((a + b*x**3)**2)**(5/2)/x**2, x)

________________________________________________________________________________________